DocumentCode :
2399089
Title :
Intelligent adaptive trajectory tracking using fuzzy basis function networks for self-balancing two-wheeled mobile robots
Author :
Tsai, Ching-Chih ; Wang, Zi-Zhu
Author_Institution :
Dept. of Electr. Eng., Nat. Chung Hsing Univ., Taichung, Taiwan
fYear :
2011
fDate :
8-10 June 2011
Firstpage :
143
Lastpage :
148
Abstract :
This paper presents an intelligent adaptive backstepping sliding-mode motion controller using fuzzy basis function networks (FBFN) method for trajectory tracking of a self-balancing two-wheeled robot (SBTWR) with parameter variations. A decoupling method is proposed to decouple the robot´s dynamic model such that the tracking controller can be synthesized using backstepping and sliding-mode control in both kinematic and dynamic levels. The FBFN is employed to on-line learn the uncertain parts of the tracking controller, thus achieving adaptive capability. Simulations results indicate that the proposed adaptive tracking controller is capable of providing satisfactory trajectory tracking performance.
Keywords :
adaptive control; control system synthesis; fuzzy control; mobile robots; motion control; position control; robot kinematics; variable structure systems; wheels; backstepping; fuzzy basis function networks; intelligent adaptive trajectory tracking control; kinematic-dynamic levels; self-balancing two-wheeled mobile robot; sliding-mode motion controller; uncertain parts; Kinematics; Mathematical model; Mobile robots; Sliding mode control; Trajectory; Wheels; FBFN; sliding-mode control; trajectory tracking; wheeled inverted pendulum;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
System Science and Engineering (ICSSE), 2011 International Conference on
Conference_Location :
Macao
Print_ISBN :
978-1-61284-351-3
Electronic_ISBN :
978-1-61284-472-5
Type :
conf
DOI :
10.1109/ICSSE.2011.5961889
Filename :
5961889
Link To Document :
بازگشت