DocumentCode :
2403995
Title :
A hybrid method for parameter estimation
Author :
Alonso, Hugo ; Magalhães, Hugo ; Mendonça, Teresa ; Rocha, Paula
Author_Institution :
Dept. de Matematica Aplicada, Porto Univ., Portugal
fYear :
2005
fDate :
1-3 Sept. 2005
Firstpage :
304
Lastpage :
309
Abstract :
In this paper a method is presented for plant model parameter estimation. The method combines the artificial neural networks ability for function approximation with a nonlinear least-squares regression technique using the Levenberg-Marquardt optimization method. This combination intends to overcome problems that arise when artificial neural networks or nonlinear least-squares regression are separately applied to parameter estimation, which is accomplished by means of potentiating each of the methods advantages. The estimation of atracurium effect concentration model parameters is used as a case study to show the efficiency of the proposed method.
Keywords :
drugs; least squares approximations; neural nets; optimisation; parameter estimation; regression analysis; Levenberg-Marquardt optimization method; artificial neural networks; atracurium effect concentration model parameters; nonlinear least-squares regression technique; parameter estimation; Artificial intelligence; Artificial neural networks; Convergence; Electronic mail; Function approximation; Neural networks; Optimization methods; Parameter estimation; Reliability theory; Statistical distributions;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Intelligent Signal Processing, 2005 IEEE International Workshop on
Print_ISBN :
0-7803-9030-X
Electronic_ISBN :
0-7803-9031-8
Type :
conf
DOI :
10.1109/WISP.2005.1531676
Filename :
1531676
Link To Document :
بازگشت