DocumentCode :
2405209
Title :
The extended jω-axis eigenstructure of a Hamiltonian matrix pencil
Author :
Goh, Keat-Choon ; Safonov, Michael G.
Author_Institution :
Dept. of Electr. Eng.-Syst., Univ. of Southern California, Los Angeles, CA, USA
fYear :
1992
fDate :
1992
Firstpage :
1897
Abstract :
The eigenstructure on the extended jω-axis of the Hamiltonian matrix pencil associated with H2 and H problems is examined and is shown to have a symmetry sufficient for the extension of the Hamiltonian/generalized eigenspace method onto the extended jω-axis. The results are hence of some significance to the computational solution of singular H2 and H control problems
Keywords :
eigenvalues and eigenfunctions; matrix algebra; optimal control; poles and zeros; state-space methods; transfer functions; H control; H2-control; Hamiltonian matrix pencil; extended j omega -axis eigenstructure; generalized eigenspace method; optimal control; state-space; symmetry; transfer function; Control systems; H infinity control; Hydrogen; Linear feedback control systems; Optimal control; Polynomials; Riccati equations; State feedback; State-space methods; Transfer functions;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Decision and Control, 1992., Proceedings of the 31st IEEE Conference on
Conference_Location :
Tucson, AZ
Print_ISBN :
0-7803-0872-7
Type :
conf
DOI :
10.1109/CDC.1992.371100
Filename :
371100
Link To Document :
بازگشت