• DocumentCode
    2406992
  • Title

    Fisher information matrix and hyperbolic geometry

  • Author

    Costa, Sueli I R ; Santos, Sandra A. ; Strapasson, João E.

  • Author_Institution
    Inst. de Matematica, UNICAMP, Campinas, Brazil
  • fYear
    2005
  • fDate
    29 Aug.-1 Sept. 2005
  • Abstract
    The Fisher information matrix induces a metric on parametric spaces of families of probability density functions. We analyse here the family of normal distributions showing how hyperbolic geometry arises naturally from the Fisher information metric.
  • Keywords
    combinatorial mathematics; geometry; information theory; matrix algebra; statistical distributions; Fisher information matrix; hyperbolic geometry; information metric; normal distributions; probability density functions; Codes; Constellation diagram; Context modeling; Extraterrestrial measurements; Gaussian distribution; Information analysis; Information geometry; Probability density function; Probability distribution; Solid modeling;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Information Theory Workshop, 2005 IEEE
  • Print_ISBN
    0-7803-9480-1
  • Type

    conf

  • DOI
    10.1109/ITW.2005.1531851
  • Filename
    1531851