DocumentCode
2406992
Title
Fisher information matrix and hyperbolic geometry
Author
Costa, Sueli I R ; Santos, Sandra A. ; Strapasson, João E.
Author_Institution
Inst. de Matematica, UNICAMP, Campinas, Brazil
fYear
2005
fDate
29 Aug.-1 Sept. 2005
Abstract
The Fisher information matrix induces a metric on parametric spaces of families of probability density functions. We analyse here the family of normal distributions showing how hyperbolic geometry arises naturally from the Fisher information metric.
Keywords
combinatorial mathematics; geometry; information theory; matrix algebra; statistical distributions; Fisher information matrix; hyperbolic geometry; information metric; normal distributions; probability density functions; Codes; Constellation diagram; Context modeling; Extraterrestrial measurements; Gaussian distribution; Information analysis; Information geometry; Probability density function; Probability distribution; Solid modeling;
fLanguage
English
Publisher
ieee
Conference_Titel
Information Theory Workshop, 2005 IEEE
Print_ISBN
0-7803-9480-1
Type
conf
DOI
10.1109/ITW.2005.1531851
Filename
1531851
Link To Document