DocumentCode :
2409953
Title :
A model of attention-guided visual sparse coding
Author :
Li, Qingyong ; Shi, Jun ; Shi, Zhongzhi
Author_Institution :
Inst. of Comput. Technol., Chinese Acad. of Sci., Beijing, China
fYear :
2005
fDate :
8-10 Aug. 2005
Firstpage :
120
Lastpage :
125
Abstract :
Sparse coding theory demonstrates that the neurons in primary visual cortex form a sparse representation of natural scenes in the viewpoint of statistics, but a typical scene contains many different patterns (corresponding to neurons in cortex) compete for neural representation because of the limited processing capacity of the visual system. We propose an attention-guided sparse coding model. This model includes two modules: nonuniform sampling module simulating the process of retina and; data-driven attention module based on the response saliency. Our experiment results show that the model notably decreases the number of coefficients which may be activated and retains the main vision information at the same time.
Keywords :
neural nets; visual perception; attention-guided sparse coding model; attention-guided visual sparse coding; data-driven attention module; natural scenes; nonuniform sampling module; primary visual cortex neuron; sparse coding theory; sparse representation; visual system; Brain modeling; Codes; Computers; Layout; Neurons; Nonuniform sampling; Retina; Signal processing; Statistics; Visual system;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Cognitive Informatics, 2005. (ICCI 2005). Fourth IEEE Conference on
Print_ISBN :
0-7803-9136-5
Type :
conf
DOI :
10.1109/COGINF.2005.1532623
Filename :
1532623
Link To Document :
بازگشت