• DocumentCode
    2410708
  • Title

    Recent result on classification of finite dimensional maximal rank estimation algebras with state space dimension 3

  • Author

    Yau, Stephen S T ; Leung, Chi-Wah

  • Author_Institution
    Dept. of Math. Stat. & Comput. Sci., Illinois Univ., Chicago, IL, USA
  • fYear
    1992
  • fDate
    1992
  • Firstpage
    2247
  • Abstract
    R. W. Brockett (1983) proposed to classify all finite dimensional estimation algebras. An affirmative solution to Brockett´s problem will allow construction of all possible finite dimensional recursive filters from the Lie algebraic point of view. The concept of an estimation algebra with maximal rank was introduced by L. F. Tam et al. (1990). This is the most important general subclass of estimation algebras. S. S.-T. Yau and W.L. Chiou (1991) have already classified all maximal rank finite dimensional estimation algebras with state space dimension at most 2. Here, the case for state space dimension 3 is studied
  • Keywords
    Lie algebras; estimation theory; filtering and prediction theory; state-space methods; Brockett´s problem; Lie algebra; finite dimensional maximal rank estimation algebras; finite dimensional recursive filters; state space dimension; Algebra; Computer science; Electronic mail; Filtering; Filters; Mathematics; Nonlinear filters; Polynomials; State estimation; State-space methods; Statistics;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Decision and Control, 1992., Proceedings of the 31st IEEE Conference on
  • Conference_Location
    Tucson, AZ
  • Print_ISBN
    0-7803-0872-7
  • Type

    conf

  • DOI
    10.1109/CDC.1992.371393
  • Filename
    371393