DocumentCode :
2410708
Title :
Recent result on classification of finite dimensional maximal rank estimation algebras with state space dimension 3
Author :
Yau, Stephen S T ; Leung, Chi-Wah
Author_Institution :
Dept. of Math. Stat. & Comput. Sci., Illinois Univ., Chicago, IL, USA
fYear :
1992
fDate :
1992
Firstpage :
2247
Abstract :
R. W. Brockett (1983) proposed to classify all finite dimensional estimation algebras. An affirmative solution to Brockett´s problem will allow construction of all possible finite dimensional recursive filters from the Lie algebraic point of view. The concept of an estimation algebra with maximal rank was introduced by L. F. Tam et al. (1990). This is the most important general subclass of estimation algebras. S. S.-T. Yau and W.L. Chiou (1991) have already classified all maximal rank finite dimensional estimation algebras with state space dimension at most 2. Here, the case for state space dimension 3 is studied
Keywords :
Lie algebras; estimation theory; filtering and prediction theory; state-space methods; Brockett´s problem; Lie algebra; finite dimensional maximal rank estimation algebras; finite dimensional recursive filters; state space dimension; Algebra; Computer science; Electronic mail; Filtering; Filters; Mathematics; Nonlinear filters; Polynomials; State estimation; State-space methods; Statistics;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Decision and Control, 1992., Proceedings of the 31st IEEE Conference on
Conference_Location :
Tucson, AZ
Print_ISBN :
0-7803-0872-7
Type :
conf
DOI :
10.1109/CDC.1992.371393
Filename :
371393
Link To Document :
بازگشت