DocumentCode :
2414921
Title :
Fuzzy Ranking of Financial Statements for Fraud Detection
Author :
Chai, Wei ; Hoogs, Bethany K. ; Verschueren, Benjamin T.
Author_Institution :
Gen. Electr. Global Res., Niskayuna
fYear :
0
fDate :
0-0 0
Firstpage :
152
Lastpage :
158
Abstract :
Automatic detection of anomalies in financial statements can decrease the risk of exposure to fraudulent corporate behavior. This paper proposes a method to convert fraud classification rules learned from a genetic algorithm to a fuzzy score representing the degree to which a company´s financial statements match those rules. Applying the method to financial data in real time can lead to the early detection of potentially fraudulent corporate behavior.
Keywords :
financial data processing; fraud; fuzzy reasoning; fuzzy set theory; genetic algorithms; learning (artificial intelligence); pattern classification; security of data; AI learning; automatic anomaly detection; classification rule; financial statement; fraud detection; fraudulent corporate behavior; fuzzy ranking; fuzzy set theory; genetic algorithm; Automation; Computerized monitoring; Fuzzy sets; Genetic algorithms; Inspection; Investments; Logistics; Neural networks; Portfolios; Security;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Fuzzy Systems, 2006 IEEE International Conference on
Conference_Location :
Vancouver, BC
Print_ISBN :
0-7803-9488-7
Type :
conf
DOI :
10.1109/FUZZY.2006.1681708
Filename :
1681708
Link To Document :
بازگشت