DocumentCode :
2415436
Title :
A new bias partitioned square-root information filter and smoother for aircraft flight state and parameter estimation
Author :
Youmin, Zhang ; Hongcai, Zhang ; Guanzhong, Dai
Author_Institution :
Dept. of Autom. Control, Northwestern Polytech. Univ., Shaanxi, China
fYear :
1992
fDate :
1992
Firstpage :
741
Abstract :
A novel bias partitioned square-root information filter (PSRIF) with an associated partitioned square-root information smoother (PSRIS) for aircraft flight state and parameter estimation is proposed. This algorithm not only can improve the numerical robustness and precision of flight state estimation but can also make the computation more efficient than the augmented extended Kalman filter or the conventional square-root information filter and square-root information smoother (SRIF/SRIS). Results of simulated and actual flight test data computation on two types of Chinese aircraft show that the proposed method can give accurate estimates of flight state and parameter for high and low sampling rates and is much more numerically stable and efficient that the other techniques considered
Keywords :
Kalman filters; State estimation; aircraft control; filtering and prediction theory; parameter estimation; state estimation; aircraft; bias partitioned square-root information filter; extended Kalman filter; flight state estimation; flight test data; parameter estimation; sampling rates; square-root information filter; square-root information smoother; Aerospace simulation; Aircraft; Computational modeling; Information filters; Parameter estimation; Partitioning algorithms; Robustness; Sampling methods; State estimation; Testing;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Decision and Control, 1992., Proceedings of the 31st IEEE Conference on
Conference_Location :
Tucson, AZ
Print_ISBN :
0-7803-0872-7
Type :
conf
DOI :
10.1109/CDC.1992.371628
Filename :
371628
Link To Document :
بازگشت