DocumentCode :
243536
Title :
Discovering Organizational Correlations from Twitter
Author :
Jingyuan Zhang ; Xiaoxiao Shi ; Xiangnan Kong ; Hong-Han Shuai ; Yu, Philip S.
Author_Institution :
Dept. of Comput. Sci., Univ. of Illinois at Chicago, Chicago, IL, USA
fYear :
2014
fDate :
14-14 Dec. 2014
Firstpage :
243
Lastpage :
250
Abstract :
Organizational relationships are usually very complex in real life. It is difficult or impossible to directly measure such correlations among different organizations, because important information is usually not publicly available (e.g., The correlations of terrorist organizations). Nowadays, an increasing amount of organizational information can be posted online by individuals and spread instantly through Twitter. Such information can be crucial for detecting organizational correlations. In this paper, we study the problem of discovering correlations among organizations from Twitter. Mining organizational correlations is a very challenging task due to the following reasons: a) Data in Twitter occurs as large volumes of mixed information. The most relevant information about organizations is often buried. Thus, the organizational correlations can be scattered in multiple places, represented by different forms, b) Making use of information from Twitter collectively and judiciously is difficult because of the multiple representations of organizational correlations that are extracted. In order to address these issues, we propose Multi-CG (Multiple Correlation Graphs based model), an unsupervised framework that can learn a consensus of correlations among organizations based on multiple representations extracted from Twitter, which is more accurate and robust than correlations based on a single representation. Empirical study shows that the consensus graph extracted from Twitter can capture the organizational correlations effectively.
Keywords :
data mining; graph theory; knowledge representation; social networking (online); unsupervised learning; Twitter data; knowledge representation; multiCG; multiple correlation graph based model; organizational correlation mining; unsupervised framework; Companies; Correlation; Data mining; High definition video; Standards organizations; Twitter; Twitter; correlation; organization;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Data Mining Workshop (ICDMW), 2014 IEEE International Conference on
Conference_Location :
Shenzhen
Print_ISBN :
978-1-4799-4275-6
Type :
conf
DOI :
10.1109/ICDMW.2014.109
Filename :
7022604
Link To Document :
بازگشت