Title :
A Novel Dummy-Based Mechanism to Protect Privacy on Trajectories
Author :
Xichen Wu ; Guangzhong Sun
Author_Institution :
Sch. of Comput. Sci. & Technol., Univ. of Sci. & Technol. of China, Hefei, China
Abstract :
In recent years, wireless communication technologies and accurate positioning devices enable us to enjoy various types of location-based services. However, revealing users location information to potentially untrusted LBS providers is one of the most significant privacy threats in location-based services. The dummy-based privacy-preserving approach is a popular technology that can protect real trajectories from exposing to attackers. Moreover, it does not need a trusted third part, while guaranteeing the quality of service. When user requests a service, dummy trajectories anony mize the real trajectory to satisfy privacy-preserving requirements. In this paper, we propose a new privacy model that includes three reasonable privacy metrics. We also design a new algorithm named adaptive dummy trajectories generation algorithm (ADTGA) to derive uniformly distributed dummy trajectories. Dummy trajectories generated by our algorithm can achieve stricter privacy-preserving requirements based on our privacy model. The experimental results show that our proposed algorithm can use fewer dummy trajectories to satisfy the same privacy-preserving requirement than existing algorithms, and the distribution of dummy trajectories is more uniformly.
Keywords :
data privacy; ADTGA; adaptive dummy trajectories generation algorithm; distributed dummy trajectories; dummy-based mechanism; dummy-based privacy-preserving approach; location-based services; privacy metrics; privacy model; privacy protection; privacy-preserving requirements; quality of service; untrusted LBS providers; user requests; users location information; wireless communication technologies; Adaptation models; Algorithm design and analysis; Educational institutions; Measurement; Privacy; Trajectory; Dummy-based anonymization; Location-based services; Trajectory privacy;
Conference_Titel :
Data Mining Workshop (ICDMW), 2014 IEEE International Conference on
Conference_Location :
Shenzhen
Print_ISBN :
978-1-4799-4275-6
DOI :
10.1109/ICDMW.2014.122