DocumentCode :
2439850
Title :
On conditions for linearity of optimal estimation
Author :
Akyol, Emrah ; Viswanatha, Kumar ; Rose, Kenneth
Author_Institution :
Dept. of Electr. & Comput. Eng., Univ. of California at Santa Barbara, Santa Barbara, CA, USA
fYear :
2010
fDate :
Aug. 30 2010-Sept. 3 2010
Firstpage :
1
Lastpage :
5
Abstract :
When is optimal estimation linear? It is well-known that, in the case of a Gaussian source contaminated with Gaussian noise, a linear estimator minimizes the mean square estimation error. This paper analyzes more generally the conditions for linearity of optimal estimators. Given a noise (or source) distribution, and a specified signal to noise ratio (SNR), we derive conditions for existence and uniqueness of a source (or noise) distribution that renders the Lp norm optimal estimator linear. We then show that, if the noise and source variances are equal, then the matching source is distributed identically to the noise. Moreover, we prove that the Gaussian source-channel pair is unique in that it is the only source-channel pair for which the MSE optimal estimator is linear at more than one SNR values.
Keywords :
Gaussian channels; Gaussian noise; channel estimation; mean square error methods; Gaussian noise; Gaussian source channel; MSE optimal estimator; SNR; linear optimal estimation; mean square estimation error; signal to noise ratio; Channel estimation; Equations; Estimation; Linearity; Random variables; Signal to noise ratio;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Information Theory Workshop (ITW), 2010 IEEE
Conference_Location :
Dublin
Print_ISBN :
978-1-4244-8262-7
Electronic_ISBN :
978-1-4244-8263-4
Type :
conf
DOI :
10.1109/CIG.2010.5592845
Filename :
5592845
Link To Document :
بازگشت