DocumentCode
2442005
Title
QR factorization of tall and skinny matrices in a grid computing environment
Author
Agullo, Emmanuel ; Coti, Camille ; Dongarra, Jack ; Herault, Thomas ; Langem, Julien
Author_Institution
Dpt of Electr. Eng. & Comput. Sci., Univ. of Tennessee, Knoxville, TN, USA
fYear
2010
fDate
19-23 April 2010
Firstpage
1
Lastpage
11
Abstract
Previous studies have reported that common dense linear algebra operations do not achieve speed up by using multiple geographical sites of a computational grid. Because such operations are the building blocks of most scientific applications, conventional supercomputers are still strongly predominant in high-performance computing and the use of grids for speeding up large-scale scientific problems is limited to applications exhibiting parallelism at a higher level. We have identified two performance bottlenecks in the distributed memory algorithms implemented in ScaLAPACK, a state-of-the-art dense linear algebra library. First, because ScaLA-PACK assumes a homogeneous communication network, the implementations of ScaLAPACK algorithms lack locality in their communication pattern. Second, the number of messages sent in the ScaLAPACK algorithms is significantly greater than other algorithms that trade flops for communication. In this paper, we present a new approach for computing a QR factorization - one of the main dense linear algebra kernels - of tall and skinny matrices in a grid computing environment that overcomes these two bottlenecks. Our contribution is to articulate a recently proposed algorithm (Communication Avoiding QR) with a topology-aware middleware (QCG-OMPI) in order to confine intensive communications (ScaLAPACK calls) within the different geographical sites. An experimental study conducted on the Grid´5000 platform shows that the resulting performance increases linearly with the number of geographical sites on large-scale problems (and is in particular consistently higher than ScaLAPACK´s).
Keywords
distributed memory systems; grid computing; linear algebra; matrix decomposition; middleware; software libraries; QR factorization; ScaLAPACK algorithm; communication avoiding QR; communication pattern; distributed memory algorithm; geographical site; grid computing environment; homogeneous communication network; linear algebra kernel; linear algebra library; topology-aware middleware; Communication networks; Concurrent computing; Grid computing; Kernel; Large-scale systems; Libraries; Linear algebra; Middleware; Parallel processing; Supercomputers;
fLanguage
English
Publisher
ieee
Conference_Titel
Parallel & Distributed Processing (IPDPS), 2010 IEEE International Symposium on
Conference_Location
Atlanta, GA
ISSN
1530-2075
Print_ISBN
978-1-4244-6442-5
Type
conf
DOI
10.1109/IPDPS.2010.5470475
Filename
5470475
Link To Document