DocumentCode :
2442188
Title :
Contamination removal methods in cDNA microarray data
Author :
Chan, Shih-Huang ; Chang, Wan-Chi ; Lin, Chien-Ju
Author_Institution :
Dept. of Stat., Nat. Cheng Kung Univ., Tainan
fYear :
2006
fDate :
28-30 May 2006
Firstpage :
39
Lastpage :
40
Abstract :
Our objective is to detect and remedy the contaminated spots for cDNA microarray data. To check the existence of unusual spots, single linkage clustering is used to assess the background intensities. Then, K-means clustering method is applied to identify the contaminated area. We estimate the amount of contamination, for background and foreground, through the use of nonparametric spline regression and empirical cumulative distribution approach, separately. A simulation study shows that the performance of the recommended approach is promising.
Keywords :
DNA; biology computing; cellular biophysics; molecular biophysics; regression analysis; K-means clustering method; cDNA microarray data; contamination removal methods; empirical cumulative distribution approach; nonparametric spline regression; single linkage clustering; Clustering methods; Contamination; DNA; Data analysis; Fluorescence; Gene expression; Quality control; Spline; Statistical analysis; Statistics;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Genomic Signal Processing and Statistics, 2006. GENSIPS '06. IEEE International Workshop on
Conference_Location :
College Station, TX
Print_ISBN :
1-4244-0384-7
Electronic_ISBN :
1-4244-0385-5
Type :
conf
DOI :
10.1109/GENSIPS.2006.353145
Filename :
4161766
Link To Document :
بازگشت