DocumentCode :
2442435
Title :
A simple fast jacket transform for DFT based on generalized prime factor decomposing algorithm
Author :
Guo, Ying ; Liu, Yangye ; Song, Xinlei ; Lee, Moon Ho
Author_Institution :
Sch. of Inf. Sci. & Eng., Central South Univ., Changsha, China
fYear :
2011
fDate :
25-28 Sept. 2011
Firstpage :
265
Lastpage :
270
Abstract :
The simple factorization and construction algorithms for M-dimensional Jacket matrices are proposed on the basis of fast DFT transforms underlying generalized CRT index mappings. Based on the successively coprime order DFT matrices with respect to Chinese remainder theorem (CRT), the proposed algorithms are presented with simplicity and clarity on the basis of the yielded sparse matrices.
Keywords :
Hadamard transforms; discrete Fourier transforms; matrix decomposition; number theory; sparse matrices; CRT index mapping; Chinese remainder theorem; DFT transform; construction algorithm; coprime order DFT matrix; fast jacket transform; m-dimensional jacket matrix; prime factor decomposing algorithm; sparse matrix; Discrete Fourier transforms; Educational institutions; Indexes; Matrix decomposition; Nickel; Sparse matrices;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Business, Engineering and Industrial Applications (ISBEIA), 2011 IEEE Symposium on
Conference_Location :
Langkawi
Print_ISBN :
978-1-4577-1548-8
Type :
conf
DOI :
10.1109/ISBEIA.2011.6088818
Filename :
6088818
Link To Document :
بازگشت