DocumentCode :
2442815
Title :
Interactive learning for classifying microarray gene expression data
Author :
Lu, Yijuan ; Tian, Qi ; Sanchez, Maribel ; Wang, Yufeng
Author_Institution :
Dept. of Comput. Sci., Univ. of Texas at San Antonio, San Antonio, TX
fYear :
2006
fDate :
28-30 May 2006
Firstpage :
103
Lastpage :
104
Abstract :
Relevance feedback [1], which has been successfully used in content-based image retrieval, is rarely used in the field of bioinformatics. In this paper, we introduce relevance feedback to microarray analysis and implement an interactive learning framework for classifying microarray gene expression data. The aim is to incorporate specialists´ feedback to retrain our classifier, which can bridge the gap between the temporal expressions and the associated semantics. Extensive experiments on the Plasmodium falciparum dataset show the effectiveness and promising performance of the scheme.
Keywords :
biology computing; content-based retrieval; image retrieval; learning (artificial intelligence); pattern classification; relevance feedback; Plasmodium falciparum dataset; bioinformatics; content-based image retrieval; interactive learning; microarray analysis; microarray gene expression data classification; relevance feedback; Bioinformatics; Bridges; Cells (biology); Content based retrieval; Feedback; Gene expression; Genomics; Image retrieval; Information retrieval; Probes;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Genomic Signal Processing and Statistics, 2006. GENSIPS '06. IEEE International Workshop on
Conference_Location :
College Station, TX
Print_ISBN :
1-4244-0384-7
Electronic_ISBN :
1-4244-0385-5
Type :
conf
DOI :
10.1109/GENSIPS.2006.353177
Filename :
4161798
Link To Document :
بازگشت