DocumentCode
2445606
Title
Implicit Surface Modeling Suitable for Inside/Outside Tests with Radial Basis Functions
Author
Pan, Rongjiang ; Skala, Vaclav
Author_Institution
Shandong Univ., Jinan
fYear
2007
fDate
15-18 Oct. 2007
Firstpage
28
Lastpage
28
Abstract
We describe a method for computing an implicit function that represents a surface by its zero level set, given a set of points scattered over the surface and associated with surface normal vectors. This implicit function is defined as a linear combination of compactly supported radial basis functions. Our method is suitable for testing whether a given point is interior or exterior to the surface, previously only associated with globally supported or globally regularized radial basis functions. We use a two-level interpolation approach. In the coarse scale interpolation, we set basis function centers by a grid that covers the enlarged bounding box of the given point set and compute their signed distances to the underlying surface using local quadratic approximations of the nearest surface points. Then a fitting to the residual errors on the surface points and additional off-surface points is performed with fine scale basis functions. The final function is the sum of the two intermediate functions and is a good approximation of the signed distance field to the surface in the bounding box. Examples of surface reconstruction and set operations between shapes are provided.
Keywords
approximation theory; interpolation; radial basis function networks; surface reconstruction; coarse scale interpolation; globally regularized radial basis function; quadratic approximation; surface modeling; surface normal vector; two-level interpolation approach; Computer graphics; Computer science; Data engineering; Data visualization; Interpolation; Level set; Scattering; Surface fitting; Surface reconstruction; Testing;
fLanguage
English
Publisher
ieee
Conference_Titel
Computer-Aided Design and Computer Graphics, 2007 10th IEEE International Conference on
Conference_Location
Beijing
Print_ISBN
978-1-4244-1579-3
Electronic_ISBN
978-1-4244-1579-3
Type
conf
DOI
10.1109/CADCG.2007.4407842
Filename
4407842
Link To Document