DocumentCode :
2450032
Title :
Wavelet neural network adaptive learning algorithm and its ship control application
Author :
Zhang, Wenjun ; Liu, Zhengjiang ; Zhou, Xiaoming
Author_Institution :
Navig. Coll., Dalian Maritime Univ., Dalian, China
fYear :
2011
fDate :
14-16 Oct. 2011
Firstpage :
353
Lastpage :
357
Abstract :
A wavelet neural network approach is proposed for ship control purpose using nonparametric regression estimation method. The proposed wavelet neural network estimator makes use of residual based selection algorithm for hidden units´ selection and adjusts the connecting parameters with back propagation method. It is capable of handling nonlinear regressions of sparse training data. Ship course control simulation examples illustrate the satisfactory performance of this proposed approach.
Keywords :
backpropagation; neurocontrollers; regression analysis; ships; simulation; adaptive learning algorithm; backpropagation method; nonlinear regressions; nonparametric regression estimation method; ship course control simulation; wavelet neural network; Dynamics; Learning systems; Marine vehicles; Matching pursuit algorithms; Mathematical model; Signal processing algorithms; Training data; Wavelet neural network; ship control; system identification;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Soft Computing and Pattern Recognition (SoCPaR), 2011 International Conference of
Conference_Location :
Dalian
Print_ISBN :
978-1-4577-1195-4
Type :
conf
DOI :
10.1109/SoCPaR.2011.6089269
Filename :
6089269
Link To Document :
بازگشت