Title :
Surface Layer Dynamics During E-Beam Treatment
Author :
Fetzer, Renate ; An, Wenyi ; Weisenburger, Alfons ; Mueller, G.
Author_Institution :
Inst. for Pulsed Power & Microwave Technol., Karlsruhe Inst. of Technol., Eggenstein-Leopoldshafen, Germany
Abstract :
The interaction of a pulsed intense electron beam with a metal target leads to rapid heating and subsequent cooling of the surface layer, accompanied by a series of phase transitions among the solid, liquid, vapor, and plasma phase. As a consequence of the treatment, depending on the beam parameters, the metal target is eroded and a topographical pattern (waviness, craters, etc.,) evolves on its surface. Surface roughening, a major drawback of pulsed intense electron beam treatment, is well known but lacks comprehensive understanding. In this paper, the process of pulsed intense electron beam interaction with metal targets is studied with special attention to the dynamics of the target surface layer and the development of surface roughness. The pulsed electron beam facility GESA generates electron beams with power density 0.5-2 MW/cm2, electron energy up to 120 keV, and pulse duration up to 200 μs. Different fast in situ diagnostics are applied to study the various processes occurring at the target surface: 1) melting and resolidification are visualized by time and space resolved imaging of the surface specular reflectivity; 2) spectroscopy is used to characterize the plasma phase adjacent to the target surface; 3) the evolution of irregularities and bubbles at the surface is studied by high-resolution microscopy; and 4) a stroboscopic imaging technique is applied to catch the evolution of the surface topography. The experimental data are compared with numerical simulations of heat transfer. All results and processes involved in pulsed intense electron beam treatment are discussed with respect to the target surface layer dynamics.
Keywords :
electron beam effects; electron-surface impact; melting; solidification; surface roughness; E-beam treatment; cooling; electron energy; high-resolution microscopy; liquid phase; melting; metal target; phase transitions; plasma phase; power density; pulse duration; pulsed electron beam facility GESA; pulsed intense electron beam interaction; pulsed intense electron beam treatment; rapid heating; resolidification; solid phase; space resolved imaging; spectroscopy; stroboscopic imaging; surface layer dynamics; surface roughness; surface specular reflectivity; surface topography; time resolved imaging; vapor phase; Electron beams; Materials; Plasma temperature; Rough surfaces; Surface roughness; Surface topography; Surface treatment; $In~situ$ diagnostics; intense electron beam; surface roughness;
Journal_Title :
Plasma Science, IEEE Transactions on
DOI :
10.1109/TPS.2013.2262393