DocumentCode :
2454339
Title :
Kernel Methods for Functional Neuroimaging Analysis
Author :
Lukic, Ana S. ; Wernick, Miles N. ; Tzikas, Dimitris G. ; Chen, Xu ; Likas, Aristidis ; Galatsanos, Nikolas P. ; Yang, Yongyi ; Zhao, Fuqiang ; Strother, Stephen C.
Author_Institution :
Dept. of Biomed. Eng., Illinois Inst. of Technol., Chicago, IL
fYear :
2006
fDate :
Oct. 29 2006-Nov. 1 2006
Firstpage :
161
Lastpage :
165
Abstract :
We propose an approach to analyzing functional neuroimages in which: (1) regions of neuronal activation are described by a superposition of spatial kernel functions, the parameters of which are estimated from the data; and (2) the presence of activation is detected by means of a generalized likelihood ratio test (GLRT). In an on-off design we model the spatial activation pattern as a sum of an unknown number of kernel functions of unknown location, amplitude and/or size. We employ two Bayesian methods of estimating the kernel functions. The first is a maximum a posteriori (MAP) estimation method based on a reversible-jump Markov-chain Monte-Carlo (RJMCMC) algorithm that searches for both the appropriate model complexity and parameter values. The second is a relevance vector machine (RVM), a kernel machine that is known to be effective in controlling model complexity (and thus discouraging overfitting).
Keywords :
Bayes methods; Markov processes; Monte Carlo methods; biomedical MRI; maximum likelihood estimation; neurophysiology; positron emission tomography; statistical testing; Bayesian method; functional neuroimage analysis; generalized likelihood ratio test; kernel machine; maximum a posteriori estimation; neuron activation; parameter estimation; relevance vector machine; reversible-jump Markov-chain Monte-Carlo algorithm; spatial activation pattern; spatial kernel function; Bayesian methods; Drugs; Kernel; Light rail systems; Magnetic resonance imaging; Maximum a posteriori estimation; Neuroimaging; Positron emission tomography; State estimation; Testing;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Signals, Systems and Computers, 2006. ACSSC '06. Fortieth Asilomar Conference on
Conference_Location :
Pacific Grove, CA
ISSN :
1058-6393
Print_ISBN :
1-4244-0784-2
Electronic_ISBN :
1058-6393
Type :
conf
DOI :
10.1109/ACSSC.2006.356606
Filename :
4176535
Link To Document :
بازگشت