DocumentCode :
2457663
Title :
Hierarchical stochastic gradient parameter estimation algorithms for multivariable systems with colored noises
Author :
Ding, Feng ; Liu, Yanjun
Author_Institution :
Sch. of Commun. & Control Eng., Jiangnan Univ., Wuxi, China
fYear :
2009
fDate :
10-12 June 2009
Firstpage :
3830
Lastpage :
3835
Abstract :
This paper develops a hierarchical extended stochastic gradient identification algorithms for MIMO ARMAX-like systems to deal with colored noises based on the hierarchical identification principle. The convergence performance of such algorithms is studied in detail; in particular, conditions for parameter estimation errors to converge to zero are established, which include persistent excitation of the extended information vectors and strict positive realness of the noise models. Finally, the proposed algorithms are tested on an example to show their advantages and effectiveness.
Keywords :
MIMO systems; hierarchical systems; parameter estimation; stochastic systems; ARMAX-like systems; MIMO systems; colored noises; hierarchical stochastic gradient parameter estimation; multivariable systems; Colored noise; Control systems; Convergence; Delay estimation; MIMO; Parameter estimation; Polynomials; Stochastic resonance; Stochastic systems; White noise; ARMAX models; Recursive identification; convergence properties; estimation; hierarchical identification principle; multivariable systems; stochastic gradient;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
American Control Conference, 2009. ACC '09.
Conference_Location :
St. Louis, MO
ISSN :
0743-1619
Print_ISBN :
978-1-4244-4523-3
Electronic_ISBN :
0743-1619
Type :
conf
DOI :
10.1109/ACC.2009.5159807
Filename :
5159807
Link To Document :
بازگشت