DocumentCode :
2458863
Title :
Feature Preserving Image Smoothing Using a Continuous Mixture of Tensors
Author :
Subakan, Özlem ; Jian, Bing ; Vemuri, Baba C. ; Vallejos, C. Eduardo
Author_Institution :
Univ. of Florida, Gainesville
fYear :
2007
fDate :
14-21 Oct. 2007
Firstpage :
1
Lastpage :
6
Abstract :
Many computer vision and image processing tasks require the preservation of local discontinuities, terminations and bifurcations. Denoising with feature preservation is a challenging task and in this paper, we present a novel technique for preserving complex oriented structures such as junctions and corners present in images. This is achieved in a two stage process namely. All image data are pre- processed to extract local orientation information using a steerable Gabor filter bank. The orientation distribution at each lattice point is then represented by a continuous mixture of Gaussians. The continuous mixture representation can be cast as the Laplace transform of the mixing density over the space of positive definite (covariance) matrices. This mixing density is assumed to be a parameterized distribution, namely, a mixture of Wisharts whose Laplace transform is evaluated in a closed form expression called the Rigaut type function, a scalar-valued function of the parameters of the Wishart distribution. Computation of the weights in the mixture Wisharts is formulated as a sparse deconvolution problem. The feature preserving denoising is then achieved via iterative convolution of the given image data with the Rigaut type function. We present experimental results on noisy data, real 2D images and 3D MRI data acquired from plant roots depicting bifurcating roots. Superior performance of our technique is depicted via comparison to the state-of-the-art anisotropic diffusion filter.
Keywords :
Gabor filters; Gaussian processes; Laplace transforms; feature extraction; image denoising; iterative methods; tensors; Gabor filter bank; Gaussian mixture; Laplace transform; Rigaut type function; Wishart distribution; computer vision; feature preserving denoising; image denoising; image processing; image smoothing; iterative convolution; scalar-valued function; sparse deconvolution; tensors; Bifurcation; Computer vision; Data mining; Gabor filters; Image processing; Laplace equations; Lattices; Noise reduction; Smoothing methods; Tensile stress;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computer Vision, 2007. ICCV 2007. IEEE 11th International Conference on
Conference_Location :
Rio de Janeiro
ISSN :
1550-5499
Print_ISBN :
978-1-4244-1630-1
Electronic_ISBN :
1550-5499
Type :
conf
DOI :
10.1109/ICCV.2007.4408918
Filename :
4408918
Link To Document :
بازگشت