DocumentCode :
2460318
Title :
Prime and non-prime implicants in the minimization of multiple-valued logic functions
Author :
Tirumalai, Parthasarathy P. ; Butler, Jon T.
Author_Institution :
Hewlett-Packard Co., Santa Clara, CA, USA
fYear :
1989
fDate :
29-31 May 1989
Firstpage :
272
Lastpage :
279
Abstract :
Minimal sum-of-products expressions for multiple-valued logic functions for realization by programmable logic arrays are investigated. The focus is on expressions where product terms consist of the MIN of interval literals on input variables and are combined using one of two operations, SUM or MAX. In binary logic, the question of whether or not prime implicants are sufficient to realize all functions optimally has been answered in the affirmative. The same question is considered for higher radix functions. When the combining operation is MAX, prime implicants are sufficient. However, it is shown that this is not the case with SUM. It is also shown that all functions cannot be optimally realized by successively selecting implicants that are prime with respect to the intermediate functions. In fact, the number of implicants in a solution using prime implicants successively can be significantly larger than the number of implicants in a minimal solution
Keywords :
logic arrays; logic design; many-valued logics; minimisation of switching nets; MAX; SUM; binary logic; intermediate functions; minimization of multiple-valued logic functions; nonprime implicants; prime implicants; programmable logic arrays; Ducts; Input variables; Integrated circuit synthesis; Integrated circuit technology; Logic circuits; Logic design; Logic functions; Minimization; Programmable logic arrays;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Multiple-Valued Logic, 1989. Proceedings., Nineteenth International Symposium on
Conference_Location :
Guangzhou
Print_ISBN :
0-8186-1947-3
Type :
conf
DOI :
10.1109/ISMVL.1989.37795
Filename :
37795
Link To Document :
بازگشت