DocumentCode :
2460458
Title :
Adding Local Search to Particle Swarm Optimization
Author :
Das, Sanjoy ; Koduru, Praveen ; Gui, Min ; Cochran, Michael ; Wareing, Austin ; Welch, Stephen M. ; Babin, Bruce R.
Author_Institution :
Kansas State Univ., Manhattan
fYear :
0
fDate :
0-0 0
Firstpage :
428
Lastpage :
433
Abstract :
Particle swarm optimization is a stochastic algorithm for optimizing continuous functions. It uses a population of particles that follow trajectories through the search space towards good optima. This paper proposes adding a local search component to PSO to improve its convergence speed. Two possible methods are discussed. The first adds a term containing estimated gradient information to the velocity of each particle. The second explicitly incorporates the Nelder-Mead algorithm, a known local search technique, within PSO. The suggested methods have been applied to the problem of estimating parameters of a gene network model. Results indicate the effectiveness of the proposed strategies.
Keywords :
particle swarm optimisation; search problems; stochastic processes; Nelder-Mead algorithm; continuous functions optimization; local search technique; particle swarm optimization; stochastic algorithm; Biological system modeling; Birds; Convergence; Differential equations; Evolution (biology); Marine animals; Optimization methods; Parameter estimation; Particle swarm optimization; Stochastic processes;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Evolutionary Computation, 2006. CEC 2006. IEEE Congress on
Conference_Location :
Vancouver, BC
Print_ISBN :
0-7803-9487-9
Type :
conf
DOI :
10.1109/CEC.2006.1688340
Filename :
1688340
Link To Document :
بازگشت