Title :
Adaptive Vocabulary Forests br Dynamic Indexing and Category Learning
Author :
Yeh, Tom ; Lee, John ; Darrell, Trevor
Author_Institution :
MIT, Cambridge
Abstract :
Histogram pyramid representations computed from a vocabulary tree of visual words have proven valuable for a range of image indexing and recognition tasks; however, they have only used a single, fixed partition of feature space. We present a new efficient algorithm to incrementally compute set-of-trees (forest) vocabulary representations, and show that they improve recognition and indexing performance in methods which use histogram pyramids. Our algorithm incrementally adapts a vocabulary forest with an Inverted file system at the leaf nodes and automatically keeps existing histogram pyramid database entries up-to-date in a forward filesystem. It is possible not only to apply vocabulary tree indexing algorithms directly, but also to compute pyramid match kernel values efficiently. On dynamic recognition tasks where categories or objects under consideration may change over time, we show that adaptive vocabularies offer significant performance advantages in comparison to a single, fixed vocabulary.
Keywords :
image recognition; image representation; indexing; vocabulary; adaptive vocabulary forests; category learning; compute set-of-trees forest vocabulary representations; dynamic indexing; dynamic recognition; feature space; forward filesystem; histogram pyramid database; histogram pyramid representations; histogram pyramids; image indexing; image recognition; inverted file system; leaf nodes; pyramid match kernel; visual words; vocabulary tree indexing; Current measurement; Grid computing; Image recognition; Indexing; Kernel; Tellurium; Testing; Training data; Visual databases; Vocabulary;
Conference_Titel :
Computer Vision, 2007. ICCV 2007. IEEE 11th International Conference on
Conference_Location :
Rio de Janeiro
Print_ISBN :
978-1-4244-1630-1
Electronic_ISBN :
1550-5499
DOI :
10.1109/ICCV.2007.4409053