• DocumentCode
    246534
  • Title

    Inflatable antenna for cubesat: fabrication, deployment and results of experimental tests

  • Author

    Babuscia, Alessandra ; Van de Loo, Mark ; Wei, Quantum J. ; Pan, Shirui ; Mohan, Swati ; Seager, Sara

  • Author_Institution
    Jet Propulsion Lab., California Inst. of Technol., Pasadena, CA, USA
  • fYear
    2014
  • fDate
    1-8 March 2014
  • Firstpage
    1
  • Lastpage
    12
  • Abstract
    CubeSats and small satellites have potential to provide means to explore space and to perform science in a more affordable way. As the goals for these spacecraft become more ambitious in space exploration, moving from Low Earth Orbit (LEO) to Geostationary Earth Orbit (GEO) or further, the communication systems currently implemented will not be able to support those missions. One of the bottlenecks is the antennas´ size, due to the close relation between antenna gain and dimensions. Current antennas for CubeSats are mostly dipole or patch antennas with limited gain. Deployable (not inflatable) antennas for CubeSats are currently being investigated, but these solutions are affected by the challenge of packaging the whole deployable structure in a small spacecraft. The work that we propose represents the first attempt to develop an inflatable antenna for CubeSats. Inflatable structures and antennas can be packaged efficiently, occupying a small amount of space, and they can provide, once deployed, large dish dimension and correspondent gain. Inflatable antennas have been previously tested in space (Inflatable Antenna Experiment, STS-77). However they have never been developed for small spacecraft such as CubeSats, where the packaging efficiency, the deployment, and the inflation represent a challenge. Previous works developed by the authors described trade-off analysis, preliminary design and radiation model for the antenna. The research presented in this paper is focused specifically on implementation and testing. Details of the antenna´s fabrication and related issues are illustrated as well as the mechanism to fold and deploy the antenna in space. Finally, results of the experimental tests (vacuum chamber and anechoic chamber) are described. Future work in the development of the antenna will include the improvement of the fabrication process and the design of a 3U CubeSat mission to be proposed as a technical demonstration.
  • Keywords
    satellite antennas; space vehicles; 3U CubeSat mission; CubeSat; GEO; LEO; anechoic chamber; deployable structure; fabrication process; geostationary earth orbit; inflatable antenna; low earth orbit; satellites; space exploration; spacecraft; testing; vacuum chamber; Antennas; Fabrication; Laboratories; Propulsion; Shape; Space vehicles; Springs;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Aerospace Conference, 2014 IEEE
  • Conference_Location
    Big Sky, MT
  • Print_ISBN
    978-1-4799-5582-4
  • Type

    conf

  • DOI
    10.1109/AERO.2014.7024296
  • Filename
    7024296