DocumentCode :
2465621
Title :
Resource-Aware Parameterizations of EDA
Author :
Gelly, Sylvain ; Teytaud, Olivier ; Gagné, Christian
Author_Institution :
Équipe TAO (INRIA Futurs), LRI, UMR 8623 (CNRS - Université Paris-Sud), Bat. 490, Université Paris Sud, 91405 Orsay CEDEX, France.
fYear :
2006
fDate :
16-21 July 2006
Firstpage :
2506
Lastpage :
2512
Abstract :
This paper presents a framework for the theoretical analysis of Estimation of Distribution Algorithms (EDA). Using this framework, derived from the VC-theory, we propose non-asymptotic bounds which depend on: 1) the population size, 2) the selection rate, 3) the families of distributions used for the modelling, 4) the dimension, and 5) the number of iterations. To validate these results, optimization algorithms are applied to a context where bounds on resources are crucial, namely Design of Experiments, that is a black-box optimization with very few fitness-values evaluations.
Keywords :
Algorithm design and analysis; Cost function; Design optimization; Electronic design automation and methodology; Finite difference methods; Genetic algorithms; Neural networks; Optimization methods; Polynomials; Samarium;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Evolutionary Computation, 2006. CEC 2006. IEEE Congress on
Print_ISBN :
0-7803-9487-9
Type :
conf
DOI :
10.1109/CEC.2006.1688620
Filename :
1688620
Link To Document :
بازگشت