Title :
Classification of Gene Expression Data by Majority Voting Genetic Programming Classifier
Author :
Paul, Topon Kumar ; Hasegawa, Yoshihiko ; Iba, Hitoshi
Author_Institution :
Univ. of Tokyo, Chiba
Abstract :
Recently, genetic programming (GP) has been applied to the classification of gene expression data. In its typical implementation, using training data, a single rule or a single set of rules is evolved with GP, and then it is applied to test data to get generalized test accuracy. However, in most cases, the generalized test accuracy is not higher. In this paper, we propose a majority voting technique for prediction of the labels of test samples. Instead of a single rule or a single set of rules, we evolve multiple rules with GP and then apply those rules to test samples to determine their labels by using the majority voting technique. We demonstrate the effectiveness of our proposed method by performing different types of experiments on two microarray data sets.
Keywords :
biology computing; genetic algorithms; genetics; learning (artificial intelligence); pattern classification; gene expression data classification; majority voting genetic programming classifier; microarray data sets; training datasets; Environmental factors; Evolutionary computation; Filters; Gene expression; Genetic programming; Support vector machine classification; Support vector machines; Testing; Training data; Voting;
Conference_Titel :
Evolutionary Computation, 2006. CEC 2006. IEEE Congress on
Conference_Location :
Vancouver, BC
Print_ISBN :
0-7803-9487-9
DOI :
10.1109/CEC.2006.1688622