DocumentCode
2467368
Title
Ordinal Pareto Genetic Programming
Author
Smits, Guido ; Vladislavleva, Ekaterina
Author_Institution
Dow Benelux B.V., Temeuzen
fYear
0
fDate
0-0 0
Firstpage
3114
Lastpage
3120
Abstract
This paper introduces the first attempt to combine the theory of ordinal optimization and symbolic regression via genetic programming. A new approach called ordinal ParetoGP allows obtaining considerably fitter solutions with more consistency between independent runs while spending less computational effort. The conclusions are supported by a number of experiments using three symbolic regression benchmark problems of various size.
Keywords
Pareto optimisation; genetic algorithms; regression analysis; ordinal Pareto genetic programming; ordinal optimization; symbolic regression problems; Econometrics; Genetic mutations; Genetic programming; Mathematics; Multidimensional systems; Navigation; Operations research; Research and development; Robots; Stochastic processes;
fLanguage
English
Publisher
ieee
Conference_Titel
Evolutionary Computation, 2006. CEC 2006. IEEE Congress on
Conference_Location
Vancouver, BC
Print_ISBN
0-7803-9487-9
Type
conf
DOI
10.1109/CEC.2006.1688703
Filename
1688703
Link To Document