Title :
Log-periodogram regression for non-parametric estimation of spectral density for a non-Gaussian series
Author :
Fay, Gilles ; Moulines, Eric ; Soulier, P.
Author_Institution :
Ecole Nat. Superieure des Telecommun., Paris, France
Abstract :
In this contribution, we consider the non-parametric estimation of the spectral density of a non-Gaussian linear process. The proposed method is a projection estimation of the log-density via regression on the log-periodogram. A data driven order selection is performed, and the asymptotic optimality with respect to the average square error criterion is proven for non-Gaussian linear processes. Finally, a central limit theorem on the cepstral coefficients estimates is given
Keywords :
Fourier series; cepstral analysis; estimation theory; signal processing; spectral analysis; statistical analysis; asymptotic optimality; average square error criterion; central limit theorem; cepstral coefficients estimates; data driven order selection; log-periodogram regression; non-Gaussian linear process; non-Gaussian series; non-parametric estimation; projection estimation; signal processing; spectral density; truncated Fourier series estimator; Cepstral analysis; Fourier series; Frequency; Higher order statistics; Linear systems; Maximum likelihood estimation; Moment methods; Optimization methods; Parametric statistics; Zinc;
Conference_Titel :
Statistical Signal and Array Processing, 1998. Proceedings., Ninth IEEE SP Workshop on
Conference_Location :
Portland, OR
Print_ISBN :
0-7803-5010-3
DOI :
10.1109/SSAP.1998.739402