DocumentCode :
2469823
Title :
Experiments in filtering discrete Markov random fields to textures
Author :
Chen, Chaur-Chin ; Dubes, Richard C.
Author_Institution :
Dept. of Comput. Sci., Michigan State Univ., East Lansing, MI, USA
fYear :
1989
fDate :
4-8 Jun 1989
Firstpage :
298
Lastpage :
303
Abstract :
The authors examine two important problems, estimation and goodness of fit, in modeling binary single-texture images by discrete Markov random fields. A methodology for comparing parameter estimators is proposed and applied to evaluate four estimation procedures. The classes of models considered are four-parameter Derin-Elliot models and four-parameter autobinomial models with second-order neighborhoods. A Min-χ2 estimator is proposed and shown to outperform estimators described in the literature. The methodology is based on a hardcore sampling process over the parameter space and a Wilcoxon rank-sum statistic. A static for assessing the goodness of fit between a specific model and an arbitrary texture image is also proposed and used in a Monte Carlo ranking test. The statistic is experimentally validated on synthetic textures. Experiments on natural textures suggest that second-order binary models do not fit natural textures well
Keywords :
Markov processes; filtering and prediction theory; parameter estimation; pattern recognition; picture processing; statistical analysis; Derin-Elliot models; Monte Carlo ranking test; Wilcoxon rank-sum statistic; autobinomial models; binary single-texture images; discrete Markov random fields; filtering; goodness of fit; parameter estimators; parameter space; pattern recognition; picture processing; Equations; Filtering; Image coding; Least squares methods; Linear systems; Markov random fields; Maximum likelihood estimation; Newton method; Optimization methods; Parameter estimation;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computer Vision and Pattern Recognition, 1989. Proceedings CVPR '89., IEEE Computer Society Conference on
Conference_Location :
San Diego, CA
ISSN :
1063-6919
Print_ISBN :
0-8186-1952-x
Type :
conf
DOI :
10.1109/CVPR.1989.37864
Filename :
37864
Link To Document :
بازگشت