DocumentCode
2470779
Title
Orthonormal basis selection for LPV system identification, the Fuzzy-Kolmogorov c-Max approach
Author
Tóth, R. ; Heuberger, P.S.C. ; Van den Hof, P.M.J.
Author_Institution
Delft Center for Syst. & Control, Delft Univ. of Technol.
fYear
2006
fDate
13-15 Dec. 2006
Firstpage
2529
Lastpage
2534
Abstract
A fuzzy clustering approach is developed to select pole locations for orthonormal basis functions (OBFs), used for identification of linear parameter varying (LPV) systems. The identification approach is based on interpolation of locally identified linear time invariant (LTI) models, using globally fixed OBFs. Selection of the optimal OBF structure, that guarantees the least worst-case local modelling error in an asymptotic sense, is accomplished through the fusion of the Kolmogorov n-width (KnW) theory and fuzzy c-means (FcM) clustering of observed sample system poles
Keywords
fuzzy systems; linear systems; pattern clustering; time-varying systems; Kolmogorov n-width theory; fuzzy c-means clustering; fuzzy-Kolmogorov c-max approach; linear parameter varying system; linear time invariant model; orthonormal basis function; Control design; Control systems; Electrical equipment industry; Finite impulse response filter; Fuzzy control; Fuzzy systems; Interpolation; System identification; Time varying systems; USA Councils;
fLanguage
English
Publisher
ieee
Conference_Titel
Decision and Control, 2006 45th IEEE Conference on
Conference_Location
San Diego, CA
Print_ISBN
1-4244-0171-2
Type
conf
DOI
10.1109/CDC.2006.377063
Filename
4177378
Link To Document