• DocumentCode
    2474348
  • Title

    11A-5 Interrogation of the Targeting Mechanisms of Ultrasound Contrast Agent Microbubbles Using Atomic Force Microscopy

  • Author

    Sboros, V. ; Glynos, E. ; Pye, S.D. ; Moran, C.M. ; Butler, M. ; Ross, J.A. ; McDicken, W.N. ; Koutsos, V.

  • Author_Institution
    Univ. of Edinburgh, Edinburgh
  • fYear
    2007
  • fDate
    28-31 Oct. 2007
  • Firstpage
    965
  • Lastpage
    968
  • Abstract
    The science of microbubble agents has expanded beyond imaging applications to biological targeting and drug/gene delivery. However, the majority of targeted microbubbles are manufactured without thorough characterisation of their targeting ability. Atomic Force Microscopy is capable of picoNewton force resolution, and is reported to measure single hydrogen bonds. The present study aims to introduce this nanosensor in the quantitative probing of the forces of interaction between cells and targeted microbubbles. In-house, lipid based, targeted ultrasound contrast agents that use the biotin-avidin chemistry to carry CD31 antibodies probed cultures of SkHepl cells with an Atomic Force Microscope. Tipless cantilevers were functionalised with poly-L-lysine and were immersed in a suspension of microbubbles in order to attach one at the end of each cantilever. This system then interrogated individual cells. In this initial study over 30 bubble-cell pairs were studied, producing over 200 force-distance curves. It was shown that the targeted microbubbles provide a significantly larger adhesion compared to control microbubbles. The average collective adhesion force was 0.68 plusmn 0.33 nN and was dependent on the depth of contact. As the spatial and force resolution of the AFM is of subnanometer and subnanonewton level, respectively, it is possible to spatially resolve the adhesion sites of targeted microbubbles and measure the forces of these single sites. A histogram analysis of these data demonstrating a single distribution of adhesion events present in all measurements with median at 89.2 pN. In conclusion, this system is capable of quantitative assessment of the avidity of targeted ultrasound contrast agents to cells, which is valuable information to the manufacturing process of such microbubbles.
  • Keywords
    atomic force microscopy; biomedical ultrasonics; bubbles; molecular biophysics; ultrasonic imaging; CD31 antibodies; SkHepl cells; atomic force microscopy; biotin-avidin chemistry; collective adhesion force; drug delivery; gene delivery; nanosensor; picoNewton force resolution; poly-L-lysine; suspension; targeting mechanisms; tipless cantilevers; ultrasound contrast agent microbubbles; Adhesives; Atomic force microscopy; Atomic measurements; Biology; Drugs; Force measurement; Manufacturing; Spatial resolution; Ultrasonic imaging; Ultrasonic variables measurement;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Ultrasonics Symposium, 2007. IEEE
  • Conference_Location
    New York, NY
  • ISSN
    1051-0117
  • Print_ISBN
    978-1-4244-1384-3
  • Electronic_ISBN
    1051-0117
  • Type

    conf

  • DOI
    10.1109/ULTSYM.2007.246
  • Filename
    4409819