DocumentCode :
247635
Title :
4DGVF segmentation of vector-valued images
Author :
Jaouen, V. ; Gonzalez, P. ; Chalon, S. ; Guilloteau, D. ; Buvat, I. ; Tauber, C.
Author_Institution :
INSERM, Univ. Francois-Rabelais de Tours, Tours, France
fYear :
2014
fDate :
27-30 Oct. 2014
Firstpage :
11
Lastpage :
15
Abstract :
In this paper, we extend the gradient vector flow field to the vector-valued case for robust variational segmentation of 4D images with active surfaces. Instead of only exploiting scalar edge strength in order to identify vector edges, we propagate both directions and amplitudes of vector gradients computed from the analysis of a structure tensor of the vector-valued image. To reduce contributions from noise in the calculation of the structure tensor, image channels are weighted according to a blind estimator of contrast that take profit of the deformable models framework. The proposed 4DGVF vector field is validated on synthetic image datasets and applied to biological volume delineation in dynamic PET imaging.
Keywords :
image segmentation; medical image processing; positron emission tomography; tensors; vectors; 4D image robust variational segmentation; 4DGVF segmentation; 4DGVF vector field; active surfaces; biological volume delineation; contrast blind estimator; deformable model framework; dynamic PET imaging; gradient vector flow field; image channels; scalar edge strength; synthetic image datasets; vector edges; vector gradient amplitude propagation; vector gradient direction propagation; vector-valued image structure tensor; Computational modeling; Force; Image edge detection; Image segmentation; Noise; Vectors; Deformable models; Gradient vector flow; Image segmentation; Positron emission tomography; Vector-valued images;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Image Processing (ICIP), 2014 IEEE International Conference on
Conference_Location :
Paris
Type :
conf
DOI :
10.1109/ICIP.2014.7025001
Filename :
7025001
Link To Document :
بازگشت