DocumentCode :
2477421
Title :
On the asymptotic variances of Gaussian Markov Random Field model hyperparameters in stochastic image modeling
Author :
Levada, Alexandre L M ; Mascarenhas, Nelson D A ; Tannus, Alberto
Author_Institution :
Phys. Inst. of Sao Carlos, Univ. of Sao Paulo, Sao Carlos, Brazil
fYear :
2008
fDate :
8-11 Dec. 2008
Firstpage :
1
Lastpage :
4
Abstract :
This paper addrresses the problem of approximating the asymptotic variance of Gaussian Markov Random Field (GMRF) spatial dependency hyperparameters by deriving expressions for the observed Fisher information using both first and second derivatives of the pseudo-likelihood functions. The major contribution is that the proposed method allows hypothesis testing, interval estimation and quantitative analysis on the model parameters in several MRF applications, from image analysis to statistical pattern recognition. Finally, experiments using both Markov Chain Monte Carlo (MCMC) synthetic images and real image data provided good results.
Keywords :
Gaussian processes; Markov processes; Monte Carlo methods; image processing; Gaussian Markov random field model; Markov Chain Monte Carlo synthetic images; asymptotic variances; hypothesis testing; image analysis; interval estimation; observed Fisher information; pseudo-likelihood functions; quantitative analysis; spatial dependency hyperparameters; statistical pattern recognition; stochastic image modeling; Density functional theory; Image analysis; Markov random fields; Maximum likelihood estimation; Pattern analysis; Pattern recognition; Physics computing; Pixel; Stochastic processes; Testing;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Pattern Recognition, 2008. ICPR 2008. 19th International Conference on
Conference_Location :
Tampa, FL
ISSN :
1051-4651
Print_ISBN :
978-1-4244-2174-9
Electronic_ISBN :
1051-4651
Type :
conf
DOI :
10.1109/ICPR.2008.4761216
Filename :
4761216
Link To Document :
بازگشت