DocumentCode :
2478727
Title :
An extension of sigma-point Kalman filtering using nonlinear estimator bases
Author :
Wheeler, Timothy J. ; Packard, Andrew K.
Author_Institution :
Dept. of Mech. Eng., Univ. of California, Berkeley, CA, USA
fYear :
2009
fDate :
10-12 June 2009
Firstpage :
1861
Lastpage :
1864
Abstract :
This paper investigates the problem of state estimation for nonlinear discrete-time dynamic systems. The estimator is parameterized as a linear combination of chosen basis functions. We seek the parameter that minimizes the mean squared estimation error (MSE); however, computing this objective is intractable. Hence, the MSE is approximated using the scaled unscented transform (SUT), which yields a discrete least-squares optimization problem. Tikhonov regularization is used to avoid overfitting the data supplied by the SUT. A double pendulum example is used to compare this estimation strategy to the unscented Kalman filter.
Keywords :
Kalman filters; discrete time systems; mean square error methods; nonlinear systems; optimisation; state estimation; transforms; Tikhonov regularization; least-squares optimization problem; mean squared estimation error; nonlinear discrete-time dynamic systems; nonlinear estimator bases; scaled unscented transform; sigma-point Kalman filtering; state estimation; Cost function; Density measurement; Estimation error; Filtering; Integral equations; Kalman filters; Kernel; Linear regression; Parameter estimation; State estimation;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
American Control Conference, 2009. ACC '09.
Conference_Location :
St. Louis, MO
ISSN :
0743-1619
Print_ISBN :
978-1-4244-4523-3
Electronic_ISBN :
0743-1619
Type :
conf
DOI :
10.1109/ACC.2009.5160723
Filename :
5160723
Link To Document :
بازگشت