DocumentCode :
247994
Title :
Automatic blastomere detection in day 1 to day 2 human embryo images using partitioned graphs and ellipsoids
Author :
Singh, Ashutosh ; Buonassisi, John ; Saeedi, Parvaneh ; Havelock, Jon
Author_Institution :
Sch. of Eng. Sci., Simon Fraser Univ., Burnaby, BC, Canada
fYear :
2014
fDate :
27-30 Oct. 2014
Firstpage :
917
Lastpage :
921
Abstract :
Fertility specialists have linked the size, shape and position of blastomeres in humans embryos with the viability of such embryos. We propose an automatic blastomere identification and modeling approach in an attempt to aid physicians in determining embryo´s viability. The proposed method applies isoperimetric graph partitioning, succeeded by a novel region merging algorithm to Hoffman Modulation Contrast (HMC) embryo images, to approximate blastomeres positions. Ellipsoidal models are then used to approximate the shape and the size of each blastomere. We discuss experimental results on a dataset of 40 embryo images, and expand on the advantages and drawbacks of our method while comparing our method to other approaches.
Keywords :
biomembranes; cellular biophysics; data analysis; medical image processing; HMC embryo images; Hoffman modulation contrast; automatic blastomere detection; automatic blastomere identification; automatic blastomere modeling approach; blastomere position; blastomere shape; blastomere size; ellipsoidal model; embryo images dataset; embryo viability; human embryo images; isoperimetric graph partitioning; time 1 day to 2 day; Embryo; Entropy; Image edge detection; Image segmentation; Merging; Partitioning algorithms; Shape; Blastomere; Entropy; IVF; Isoperimetric Graph Partitioning; Region Merging; Vesselness;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Image Processing (ICIP), 2014 IEEE International Conference on
Conference_Location :
Paris
Type :
conf
DOI :
10.1109/ICIP.2014.7025184
Filename :
7025184
Link To Document :
بازگشت