DocumentCode :
2480250
Title :
Von Mises-Fisher Mean Shift for Clustering on a Hypersphere
Author :
Kobayashi, Takumi ; Otsu, Nobuyuki
Author_Institution :
Inf. Technol. Res. Inst. AIST, Tsukuba, Japan
fYear :
2010
fDate :
23-26 Aug. 2010
Firstpage :
2130
Lastpage :
2133
Abstract :
We propose a method of clustering sample vectors on a hypersphere. Sample vectors are normalized in many cases, especially when applying kernel functions, and thus lie on a (unit) hypersphere. Considering the constraint of the hypersphere, the proposed method utilizes the von Mises-Fisher distribution in the framework of mean shift. It is also extended to the kernel-based clustering method via kernel tricks to cope with complex distributions. The algorithms of the proposed methods are based on simple matrix calculations. In the experiments, including a practical motion clustering task, the proposed methods produce favorable clustering results.
Keywords :
matrix algebra; pattern clustering; Von Mises-Fisher mean shift; complex distributions; hypersphere clustering; motion clustering task; Clustering algorithms; Clustering methods; Feature extraction; Kernel; Probability distribution; Transient analysis; Vectors; clustering; hypersphere; mean shift; von Mises-Fisher distribution;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Pattern Recognition (ICPR), 2010 20th International Conference on
Conference_Location :
Istanbul
ISSN :
1051-4651
Print_ISBN :
978-1-4244-7542-1
Type :
conf
DOI :
10.1109/ICPR.2010.522
Filename :
5595925
Link To Document :
بازگشت