Title :
On the asymptotics of the minimax redundancy arising in a universal coding
Author :
Szpankowski, Wojciech
Author_Institution :
Dept. of Comput. Sci., Purdue Univ., West Lafayette, IN, USA
Abstract :
Let xn denote a sequence built over a finite alphabet A, and let P(xn;w) be the probability of xn generated by the source w. We define a uniquely decodable code φ(x n) of length |φ(xn)|=-logQ(xn) where Q(·) is an arbitrary probability distribution on An . The cumulative redundancy of the encoding xn at the output of a source w is defined as p(xn;φn,w):=-logQ(xn)+logP(xn ). Finally, let us consider a set of sources Ω, and define the minimax redundancy as pn(Ω):=infφnsupw∈Ω maxxn∈An{p(xn;φn,w)}. We study asymptotically ρn(Ω) for memoryless sources via analytic methods
Keywords :
decoding; memoryless systems; minimax techniques; probability; redundancy; sequential codes; source coding; analytic methods; asymptotics; cumulative redundancy; decodable code; encoding; memoryless sources; minimax redundancy; probability distribution; sequence; universal coding; Combinatorial mathematics; Computer science; Decoding; Ear; Equations; Information analysis; Information theory; Minimax techniques; Portfolios; USA Councils;
Conference_Titel :
Information Theory, 1998. Proceedings. 1998 IEEE International Symposium on
Conference_Location :
Cambridge, MA
Print_ISBN :
0-7803-5000-6
DOI :
10.1109/ISIT.1998.708954