DocumentCode :
248164
Title :
Phase retrieval of sparse signals using optimization transfer and ADMM
Author :
Weller, D.S. ; Pnueli, A. ; Radzyner, O. ; Divon, G. ; Eldar, Y.C. ; Fessler, J.A.
Author_Institution :
EECS Dept., Univ. of Michigan, Ann Arbor, MI, USA
fYear :
2014
fDate :
27-30 Oct. 2014
Firstpage :
1342
Lastpage :
1346
Abstract :
We propose a reconstruction method for the phase retrieval problem prevalent in optics, crystallography, and other imaging applications. Our approach uses signal sparsity to provide robust reconstruction, even in the presence of outliers. Our method is multi-layered, involving multiple random initial conditions, convex majorization, variable splitting, and alternating directions method of multipliers (ADMM)-based implementation. Monte Carlo simulations demonstrate that our algorithm can correctly and robustly detect sparse signals from full and undersampled sets of squared-magnitude-only measurements, corrupted by additive noise or outliers.
Keywords :
Monte Carlo methods; optimisation; signal processing; ADMM; Monte Carlo simulations; alternating directions method of multipliers; imaging applications; optimization transfer; phase retrieval problem; sparse signals; Discrete Fourier transforms; Image reconstruction; Imaging; Noise measurement; Optics; Optimization; Robustness; ADMM; majorize-minimize; phase retrieval; sparse recovery; variable splitting;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Image Processing (ICIP), 2014 IEEE International Conference on
Conference_Location :
Paris
Type :
conf
DOI :
10.1109/ICIP.2014.7025268
Filename :
7025268
Link To Document :
بازگشت