DocumentCode :
2481988
Title :
Nonlinear System Modeling Based on Non-Parametric Identification and Linear Wavelet stimation of SDP Models
Author :
Truong, Nguyen-Vu ; Wang, Liuping ; Young, Peter C.
Author_Institution :
Sch. of Electr. & Comput. Eng., RMIT Univ., Melbourne, Vic.
fYear :
2006
fDate :
13-15 Dec. 2006
Firstpage :
2523
Lastpage :
2528
Abstract :
This paper describes a data-based approach to the identification and estimation of nonlinear dynamic systems which exploits the concept of the state dependent parameter (SDP) model structure. The major attractive features of the proposed approach are the initial identification of the nonlinear system´s structure that analyzes the nature of the associated nonlinearities by the non-parametric estimation of the SDP model using recursive fixed interval smoothing; and a compact parameterization of this initially identified parsimonious model structure via a linear wavelet functional approximation, prior to final parametric optimization. A simulation example is used to demonstrate the proposed approach
Keywords :
control nonlinearities; function approximation; nonlinear dynamical systems; parameter estimation; wavelet transforms; linear wavelet estimation; linear wavelet functional approximation; nonlinear dynamic systems; nonlinear system modeling; nonparametric estimation; nonparametric identification; parametric optimization; recursive fixed interval smoothing; state dependent parameter model; system nonlinearities; Integrated circuit modeling; Nonlinear systems; PROM; Radio access networks; Tellurium; Tin; Tires;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Decision and Control, 2006 45th IEEE Conference on
Conference_Location :
San Diego, CA
Print_ISBN :
1-4244-0171-2
Type :
conf
DOI :
10.1109/CDC.2006.376790
Filename :
4177933
Link To Document :
بازگشت