DocumentCode :
2482368
Title :
Entropy Estimation and Multi-Dimensional Scale Saliency
Author :
Suau, P. ; Escolano, F.
Author_Institution :
Robot Vision Group, Univ. de Alicante, Alicante, Spain
fYear :
2010
fDate :
23-26 Aug. 2010
Firstpage :
678
Lastpage :
681
Abstract :
In this paper we survey two multi-dimensional Scale Saliency approaches based on graphs and the k-d partition algorithm. In the latter case we introduce a new divergence metric and we show experimentally its suitability. We also show an application of multi-dimensional Scale Saliency to texture discrimination. We demonstrate that the use of multi-dimensional data can improve the performance of texture retrieval based on feature extraction.
Keywords :
entropy; estimation theory; feature extraction; image retrieval; image texture; entropy estimation; feature extraction; k-d partition algorithm; multidimensional scale saliency approaches; texture discrimination; texture retrieval; Entropy; Feature extraction; Gray-scale; Histograms; Measurement; Partitioning algorithms; Pixel; multidimensional data processing; texture categorization; visual feature extraction;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Pattern Recognition (ICPR), 2010 20th International Conference on
Conference_Location :
Istanbul
ISSN :
1051-4651
Print_ISBN :
978-1-4244-7542-1
Type :
conf
DOI :
10.1109/ICPR.2010.171
Filename :
5596022
Link To Document :
بازگشت