Title :
Optimal Quantizer for Mixed Probabilistic/Deterministic Parameter Estimation
Author_Institution :
Dept. of Inf. Phys. & Comput., Tokyo Univ.
Abstract :
In this paper, we analyse the optimal quantization of signals for parameter estimation under constraints on admissible error bounds. We deal with simple FIR models where the input is a stochastic variable of uniform distribution. Then, we consider to derive the optimal memoryless quantization schemes for the output signals, which maximize the probability that the hard bounds of the estimated system parameters consist with the given error bounds. The analytic form of the optimal quantizer is given explicitly and it represents the relation between the accuracy of parameter estimation, system parameters and the necessary information
Keywords :
parameter estimation; probability; quantisation (signal); admissible error bounds; deterministic parameter estimation; optimal memoryless quantization; optimal quantizer; optimal signal quantization; probabilistic parameter estimation; stochastic variable; uniform distribution; Automatic control; Control systems; Finite impulse response filter; Optimal control; Parameter estimation; Quantization; Signal analysis; Stochastic processes; System identification; USA Councils; networked control system; quantized system; system identification;
Conference_Titel :
Decision and Control, 2006 45th IEEE Conference on
Conference_Location :
San Diego, CA
Print_ISBN :
1-4244-0171-2
DOI :
10.1109/CDC.2006.376940