DocumentCode :
2482983
Title :
Annotation-based empirical performance tuning using Orio
Author :
Hartono, Albert ; Norris, Boyana ; Sadayappan, P.
Author_Institution :
Dept. of Comput. Sci. & Eng., Ohio State Univ., Columbus, OH, USA
fYear :
2009
fDate :
23-29 May 2009
Firstpage :
1
Lastpage :
11
Abstract :
For many scientific applications, significant time is spent in tuning codes for a particular high-performance architecture. Tuning approaches range from the relatively nonintrusive (e.g., by using compiler options) to extensive code modifications that attempt to exploit specific architecture features. Intrusive techniques often result in code changes that are not easily reversible, and can negatively impact readability, maintainability, and performance on different architectures. We introduce an extensible annotation-based empirical tuning system called Orio that is aimed at improving both performance and productivity. It allows software developers to insert annotations in the form of structured comments into their source code to trigger a number of low-level performance optimizations on a specified code fragment. To maximize the performance tuning opportunities, the annotation processing infrastructure is designed to support both architecture-independent and architecture-specific code optimizations. Given the annotated code as input, Orio generates many tuned versions of the same operation and empirically evaluates the alternatives to select the best performing version for production use. We have also enabled the use of the Pluto automatic parallelization tool in conjunction with Orio to generate efficient OpenMP-based parallel code. We describe our experimental results involving a number of computational kernels, including dense array and sparse matrix operations.
Keywords :
codes; optimisation; software architecture; Orio; Pluto automatic parallelization tool; annotation processing infrastructure; annotation-based empirical performance tuning; code optimizations; dense array; high-performance architecture; maintainability; performance optimizations; readability; software developers; sparse matrix operations; Computer architecture; Design optimization; Kernel; Performance evaluation; Pluto; Process design; Production; Productivity; Software performance; Sparse matrices;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Parallel & Distributed Processing, 2009. IPDPS 2009. IEEE International Symposium on
Conference_Location :
Rome
ISSN :
1530-2075
Print_ISBN :
978-1-4244-3751-1
Electronic_ISBN :
1530-2075
Type :
conf
DOI :
10.1109/IPDPS.2009.5161004
Filename :
5161004
Link To Document :
بازگشت