DocumentCode :
2483203
Title :
The University of Surrey Visual Concept Detection System at ImageCLEF@ICPR: Working Notes
Author :
Tahir, M.A. ; Yan, F. ; Barnard, M. ; Awais, M. ; Mikolajczyk, K. ; Kittler, J.
Author_Institution :
Centre for Vision, Speech & Signal Process., Univ. of Surrey, Guildford, UK
fYear :
2010
fDate :
23-26 Aug. 2010
Firstpage :
850
Lastpage :
853
Abstract :
Visual concept detection is one of the most important tasks in image and video indexing. This paper describes our system in the ImageCLEF@ICPR Visual Concept Detection Task which ranked first for large-scale visual concept detection tasks in terms of Equal Error Rate (EER) and Area under Curve (AUC) and ranked third in terms of hierarchical measure. The presented approach involves state-of-the-art local descriptor computation, vector quantisation via clustering, structured scene or object representation via localised histograms of vector codes, similarity measure for kernel construction and classifier learning. The main novelty is the classifier-level and kernel-level fusion using Kernel Discriminant Analysis with RBF/Power Chi-Squared kernels obtained from various image descriptors. For 32 out of 53 individual concepts, we obtain the best performance of all 12 submissions to this task.
Keywords :
content-based retrieval; image retrieval; object detection; statistical analysis; AUC; EER; ImageCLEF; RBF; area under curve; classifier-level fusion; clustering method; equal error rate; kernel construction; kernel discriminant analysis; kernel-level fusion; power chi-squared kernel; similarity measure; vector code; vector quantisation; visual concept detection; Conferences; Feature extraction; Histograms; Kernel; Support vector machines; Training; Visualization; ImageCLEF@ICPR; Kernel Discriminant Analysis; Visual Category Recongnition;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Pattern Recognition (ICPR), 2010 20th International Conference on
Conference_Location :
Istanbul
ISSN :
1051-4651
Print_ISBN :
978-1-4244-7542-1
Type :
conf
DOI :
10.1109/ICPR.2010.214
Filename :
5596062
Link To Document :
بازگشت