Title :
Compact graph representations and parallel connectivity algorithms for massive dynamic network analysis
Author :
Madduri, Kamesh ; Bader, David A.
Author_Institution :
Comput. Res. Div., Lawrence Berkeley Nat. Lab., Berkeley, CA, USA
Abstract :
Graph-theoretic abstractions are extensively used to analyze massive data sets. Temporal data streams from socio-economic interactions, social networking Web sites, communication traffic, and scientific computing can be intuitively modeled as graphs. We present the first study of novel high-performance combinatorial techniques for analyzing largescale information networks, encapsulating dynamic interaction data in the order of billions of entities. We present new data structures to represent dynamic interaction networks, and discuss algorithms for processing parallel insertions and deletions of edges in small-world networks. With these new approaches, we achieve an average performance rate of 25 million structural updates per second and a parallel speed-up of nearly 28 on a 64-way Sun UltraSPARC T2 multicore processor, for insertions and deletions to a small-world network of 33.5 million vertices and 268 million edges. We also design parallel implementations of fundamental dynamic graph kernels related to connectivity and centrality queries. Our implementations are freely distributed as part of the open-source SNAP (small-world network analysis and partitioning) complex network analysis framework.
Keywords :
complex networks; data encapsulation; data structures; graph theory; information networks; multiprocessing systems; parallel processing; query processing; Sun UltraSPARC T2 multicore processor; centrality query; compact graph representation; complex network analysis; connectivity query; data structure; dynamic graph kernel; dynamic interaction data encapsulation; dynamic interaction network; graph-theoretic abstraction; high-performance combinatorial technique; largescale information network; massive dynamic network analysis; open-source SNAP; parallel connectivity; small-world network analysis and partitioning; Algorithm design and analysis; Data analysis; Data structures; Heuristic algorithms; Information analysis; Scientific computing; Social network services; Sun; Telecommunication traffic; Traffic control;
Conference_Titel :
Parallel & Distributed Processing, 2009. IPDPS 2009. IEEE International Symposium on
Conference_Location :
Rome
Print_ISBN :
978-1-4244-3751-1
Electronic_ISBN :
1530-2075
DOI :
10.1109/IPDPS.2009.5161060