DocumentCode :
2486296
Title :
A Mixed Markov model for change detection in aerial photos with large time differences
Author :
Benedek, Csaba ; Szirányi, Tamás
Author_Institution :
Distrib. Events Anal. Res. Group, Comput. & Autom. Res. Inst., Budapest
fYear :
2008
fDate :
8-11 Dec. 2008
Firstpage :
1
Lastpage :
4
Abstract :
In the paper we propose a novel multi-layer Mixed Markov model for detecting relevant changes in registered aerial images taken with significant time differences. The introduced approach combines global intensity statistics with local correlation and contrast features. A global energy optimization process simultaneously ensures optimal local feature selection and smooth, observation-consistent classification. Validation is given on real aerial photos.
Keywords :
Markov processes; geophysical signal processing; image classification; image registration; optimisation; remote sensing; aerial photos; change detection; global energy optimization process; global intensity statistics; mixed Markov model; observation-consistent classification; registered aerial images; Distributed computing; Event detection; Feature extraction; Gaussian distribution; Histograms; Image analysis; Image segmentation; Maximum likelihood estimation; Probability; Statistics;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Pattern Recognition, 2008. ICPR 2008. 19th International Conference on
Conference_Location :
Tampa, FL
ISSN :
1051-4651
Print_ISBN :
978-1-4244-2174-9
Electronic_ISBN :
1051-4651
Type :
conf
DOI :
10.1109/ICPR.2008.4761658
Filename :
4761658
Link To Document :
بازگشت