DocumentCode :
2486605
Title :
HMM-based unusual motion detection without tracking
Author :
Utasi, Ákos ; Czüni, Lázló
Author_Institution :
Dept. of Image Process. & Neurocomputing, Univ. of Pannonia, Veszprem
fYear :
2008
fDate :
8-11 Dec. 2008
Firstpage :
1
Lastpage :
4
Abstract :
We propose novel pixel dense modeling of motion of urban traffic in noisy environments with the help of multidimensional Gaussian Mixture Models (GMMs) and Hidden Markov Models (HMMs). In our approach there is no need for object tracking in order to detect anomalous motion or to model and visualize the fluctuation of traffic. We propose a new scaling method introduced into the HMM to get a robust tool for the analysis of hundreds of motion vector samples at a time. We show the use of our model with a photorealistic video synthetized from real life recordings.
Keywords :
hidden Markov models; video surveillance; Gaussian mixture models; hidden Markov models; motion detection; noisy environments; photorealistic video; scaling method; urban traffic; Fluctuations; Gaussian noise; Hidden Markov models; Motion detection; Multidimensional systems; Object detection; Tracking; Traffic control; Visualization; Working environment noise;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Pattern Recognition, 2008. ICPR 2008. 19th International Conference on
Conference_Location :
Tampa, FL
ISSN :
1051-4651
Print_ISBN :
978-1-4244-2174-9
Electronic_ISBN :
1051-4651
Type :
conf
DOI :
10.1109/ICPR.2008.4761676
Filename :
4761676
Link To Document :
بازگشت