DocumentCode :
2487013
Title :
A non-divergent estimation algorithm in the presence of unknown correlations
Author :
Julier, Simon J. ; Uhlmann, Jeffrey K.
Author_Institution :
Robotics Res. Group, Oxford Univ., UK
Volume :
4
fYear :
1997
fDate :
4-6 Jun 1997
Firstpage :
2369
Abstract :
This paper addresses the problem of estimation when the cross-correlation in the errors between different random variables are unknown. A new data fusion algorithm, the covariance intersection algorithm (CI), is presented. It is proved that this algorithm yields consistent estimates irrespective of the actual correlations. This property is illustrated in an application of decentralised estimation where it is impossible to consistently use a Kalman filter
Keywords :
filtering theory; sensor fusion; state estimation; covariance intersection algorithm; cross-correlation; data fusion algorithm; nondivergent estimation algorithm; random variables; unknown correlations; Covariance matrix; Information filtering; Information filters; Predictive models; Random variables; Sensor fusion; Sensor systems; State estimation; Vehicles; Yield estimation;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
American Control Conference, 1997. Proceedings of the 1997
Conference_Location :
Albuquerque, NM
ISSN :
0743-1619
Print_ISBN :
0-7803-3832-4
Type :
conf
DOI :
10.1109/ACC.1997.609105
Filename :
609105
Link To Document :
بازگشت