DocumentCode :
248723
Title :
Iterative poisson-Gaussian noise parametric estimation for blind image denoising
Author :
Jezierska, A. ; Pesquet, J.-C. ; Talbot, H. ; Chaux, C.
Author_Institution :
LIGM, Univ. Paris-Est, Marne-la-Vallée, France
fYear :
2014
fDate :
27-30 Oct. 2014
Firstpage :
2819
Lastpage :
2823
Abstract :
This paper deals with noise parameter estimation from a single image under Poisson-Gaussian noise statistics. The problem is formulated within a mixed discrete-continuous optimization framework. The proposed approach jointly estimates the signal of interest and the noise parameters. This is achieved by introducing an adjustable regularization term inside an optimized criterion, together with a data fidelity error measure. The optimal solution is sought iteratively by alternating the minimization of a label field and of a noise parameter vector. Noise parameters are updated at each iteration using an Expectation-Maximization approach. The proposed algorithm is inspired from a spatial regularization approach for vector quantization. We illustrate the usefulness of our approach on macroconfocal images. The identified noise parameters are applied to a denoising algorithm, so yielding a complete denoising scheme.
Keywords :
Gaussian noise; expectation-maximisation algorithm; image coding; image denoising; iterative methods; stochastic processes; vector quantisation; Iterative poisson-Gaussian noise parametric estimation; Poisson-Gaussian noise statistics; adjustable regularization; blind image denoising; data fidelity error; denoising algorithm; discrete-continuous optimization; expectation-maximization approach; macroconfocal images; noise parameter vector; vector quantization; Estimation; Imaging; Noise reduction; PSNR; Parameter estimation; Vectors; Expectation-Maximization; Poisson-Gaussian noise; discrete optimization; parameter estimation; proximal algorithms;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Image Processing (ICIP), 2014 IEEE International Conference on
Conference_Location :
Paris
Type :
conf
DOI :
10.1109/ICIP.2014.7025570
Filename :
7025570
Link To Document :
بازگشت