DocumentCode :
2488091
Title :
Visualization of transitions of developing of hepatitis C virus-associated hepatocellular carcinoma
Author :
Miyamoto, Takanobu ; Fujita, Yusuke ; Uchimura, Shunji ; Hamamoto, Yoshihiko ; Iizuka, Norio ; Oka, Masaaki
Author_Institution :
Yamaguchi Univ., Yamaguchi
fYear :
2008
fDate :
8-11 Dec. 2008
Firstpage :
1
Lastpage :
4
Abstract :
In our previous study, we visualized microarray data of hepatocellular carcinoma (HCC) by using self-organizing-map, and investigated molecular signature representing the development of HCC. In this study, we propose two visualization methods of microarray data with Euclidean distance classifiers and Sammonpsilas nonlinear mapping. Our proposed methods will serve as tool to discover molecular signature representing the development of HCC for molecular biologists or doctors.
Keywords :
cellular arrays; cellular biophysics; data visualisation; medical computing; molecular biophysics; Euclidean distance classifiers; Sammon nonlinear mapping; hepatitis C virus-associated hepatocellular carcinoma; molecular biologists; molecular signature; self-organizing-map; transitions visualization; visualized microarray data; Artificial neural networks; Data visualization; Euclidean distance; Filtering; Liver diseases; Medical treatment; Oncological surgery; Support vector machine classification; Support vector machines; Testing;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Pattern Recognition, 2008. ICPR 2008. 19th International Conference on
Conference_Location :
Tampa, FL
ISSN :
1051-4651
Print_ISBN :
978-1-4244-2174-9
Electronic_ISBN :
1051-4651
Type :
conf
DOI :
10.1109/ICPR.2008.4761751
Filename :
4761751
Link To Document :
بازگشت